
9/11/15, 9:45 AMPHYS 3300 WSU Spr 14 32762

Page 1 of 3https://weber.instructure.com/courses/288302

PHYS 3300 WSU Spr 14 32762
Jump to Today

General Information

Class Times SL 220, 10:30-11:20 am, MWF

Required Texts Required:

Introductory Computational Physics (Klein and Godunov) ISBN 0-521-82862-7

An Introduction to Computational Physics (Pang) ISBN 978-0-521-53276-1

Recommended:

Computational Physics (Giordano and Nakanishi) ISBN 0-13-146990-8

Instructor John Armstrong

Office Hours SL 205, 11:30 AM - 12:30 PM MW or by appointment

Email jcarmstrong@weber.edu (mailto:jcarmstrong@weber.edu)

Web http://www.weber.edu/jcarmstrong (http://physics.weber.edu/armstrong)

Phone 801.626.6215

Course Description

This course extends the computational skills developed in PHYS 2300 to address a wider range of problems in modern physics. Students will explore the limits of
computational methods and develop techniques suited to high-performance computing. Applications may be chosen from nonlinear dynamics, astrophysics, condensed
matter physics, and quantum mechanics. Prerequisites: PHYS 2220 and PHYS 2300.

Course Goals

PHYS 3300 builds on the introductory programming and simulation skills you learned in PHYS 2300. This course is structured around four central themes: Tools,
Numerical Methods, Classes of Problems, and Parallel Systems. We’ll train you in some of the “tools of the trade” for computational physics, cover some more
advanced numerical techniques, deal with some common classes of problems, and extend your experience into high-performance computing. After this course, you will:

Have a strong foundation in a variety of computational and analysis tools
Learn methods for designing and analyzing a host of numerical problems in physics
Know how to evaluate and compare a range of numerical techniques applicable to different classes of problems
Have experience using an industry standard high-performance computing environment

This is a hands-on course. Come prepared to work on problems in class.

Programming Language

There is no “official” language for this course. Everything we will be doing can be developed in python, java, C/C++, FORTRAN, and many other languages. However,
you will be learning Unix, “shell” scripting, python for plotting, and possibly other programming tools. Also, you should be aware that if computing becomes part of your
career, you will be required to learn languages as you go along. Other than specifics of syntax, they are really all the same anyway! I will be able to help you debug
your code regardless of the language you choose, but I will rarely have you turn in your program code. In this course, the results are what matter. How you get there is
up to you.

Grading Policy

Your course grade is computed based on your assignments and your final project, according to the following breakdown:

Assignments 60%

Project 40%

Emergency Closure

9/11/15, 9:45 AMPHYS 3300 WSU Spr 14 32762

Page 2 of 3https://weber.instructure.com/courses/288302

Date Details

Mon Jan 6, 2014 Topic 1 - Introduction to Unix (https://weber.instructure.com/courses/288302/assignments/1369545) 10:30am

Mon Jan 13, 2014 Topic 2 - Remote computing and job scheduling

(https://weber.instructure.com/courses/288302/assignments/1369546)

10:30am

Fri Jan 17, 2014 Assignment 1 - Setting up your computing environment

(https://weber.instructure.com/courses/288302/assignments/1370022)

11:30am

Mon Jan 20, 2014 Topic 3 - Data representation and visualization

(https://weber.instructure.com/courses/288302/assignments/1369547)

10:30am

Mon Jan 27, 2014 Topic 4 - Interpolation Methods (https://weber.instructure.com/courses/288302/assignments/1369548) 10:30am

Wed Jan 29, 2014 Assignment 2 - Data representation and visualization

(https://weber.instructure.com/courses/288302/assignments/1370023)

11:30am

Mon Feb 3, 2014 Topic 5 - Differentiation Techniques

(https://weber.instructure.com/courses/288302/assignments/1369549)

10:30am

Wed Feb 5, 2014 Assignment 3 - Interpolation Methods

(https://weber.instructure.com/courses/288302/assignments/1370024)

11:30am

Mon Feb 10, 2014 Topic 6 - Integration techniques (https://weber.instructure.com/courses/288302/assignments/1369551) 10:30am

Fri Feb 14, 2014 Assignment 4 - Differentiation and Integration

(https://weber.instructure.com/courses/288302/assignments/1370026)

11:30am

Mon Feb 17, 2014 Topic 7 - Solving ordinary differential equations

(https://weber.instructure.com/courses/288302/assignments/1369552)

10:30am

Mon Feb 24, 2014 Topic 8 - Damped Oscillator/Driven Oscillator

(https://weber.instructure.com/courses/288302/assignments/1369553)

10:30am

Fri Feb 28, 2014 Assignment 5 - Oscillators and Chaos

(https://weber.instructure.com/courses/288302/assignments/1370027)

11:30am

Mon Mar 3, 2014 Topic 9 - Boundary Value Problems

(https://weber.instructure.com/courses/288302/assignments/1369558)

10:30am

Mon Mar 10, 2014 Spring Break (https://weber.instructure.com/courses/288302/assignments/1369560) 10:30am

Mon Mar 17, 2014 Topic 10 - Boundary Value Problems

(https://weber.instructure.com/courses/288302/assignments/1369559)

10:30am

Fri Mar 21, 2014 Assignment 6 - Boundary Value Problems 11:30am

In the event of a campus emergency or campus closure, information will be posted to canvas or to the main University web site as soon as it is available. As always,
your safety is the primary consideration. Regardless of the official closure instructions, if you feel it is unsafe to travel to campus due to weather or other contingencies,
follow your own best judgement. Detailed instructions for any missed classes due to emergencies will be posted to canvas.

Special Accommodations

Any students requiring accommodations or services due to a disability must contact Services for Students with Disabilities (SSD) in room 181 of the Student Service
Center. SSD can also arrange to provide course materials (including this syllabus) in alternative formats if necessary.

9/11/15, 9:45 AMPHYS 3300 WSU Spr 14 32762

Page 3 of 3https://weber.instructure.com/courses/288302

(https://weber.instructure.com/courses/288302/assignments/1370028)

Wed Apr 23, 2014 Present projects (https://weber.instructure.com/courses/288302/assignments/1369586) 11am

Assignment 01 - An Introduction to Unix
Our first task is to train you to use the tools typically ...

A Unix Tutorial
space.weber.edu/unixtut

“Shell” scripting
how to combine unix tasks

Remote computing
logging in, creating a work area, submitting a job

Your tasks
Log in, create your work area, copy test code, run code on cluster, plot results

You can access all of the tutorials at http://baldboybakery.com/courses/phys3300/index.html

PHYS 3300: Computational Physics

PHYS 3300: Computational Physics - Spring 2008 1

Assignment 3 : Interpolation Methods

PHYS 3300

1. Write a program that implements the first order, linear interpolation method.
Your program is designed to test this interpolation on the following functions:

f(x) = sin(x2)

f(x) = e

sin(x)

f(x) =
0.2

(x� 3.2)2 + 0.04

Keep in mind the following information for your top-down design:

• The user will select the equation to test

• The user will decide at how many points will be evaluated, over what
range, and at what value of x the function will be interpolated

• The program will output the interpolated value of the function

• The program will output the actual value of the function

• The program will output the percent uncertainty between the two

2. Write a program that implements an n-point Lagrangian interpolation. In ad-
dition to the considerations above, the user will select the value of n.

3. Compare the results of these methods. Which method gives the best accuracy?
What happens to the Lagrangian method when n = 1? When n is large?

4. Now we turn to “real data”. The text file balloon sounding.txt (available on
our web site) contains atmospheric sounding data (temperature, pressure, wind
direction, and wind speed as a function of height). However, there are “missing”
data, indicated by 99999. Modify your program to read input data from a file.
Interpolate the missing values for temperature, wind speed, and direction using
both methods, the linear and Lagrangian, that you prepared above. Then
plot the results of the temperature, wind speed, and direction against height,
comparing the data, the linear method, and the Lagrangian method. Some
things to consider:

(a) Typically, for atmospheric data, we plot the height on the y axis, and
the other parameter on the x axis. However, for the interpolation, the
parameter (i.e. temperature) is still the dependent variable.

(b) You should end up with three plots, one for temperature, one for wind
speed, and one for direction. Each plot should have the linear interpolation,
the Lagrangian interpolation, and the original data plotted on it.

5. Comment on the two methods in this “real world” application. Which method
worked best for which parameter?

1

Assignment 3 : Di↵erentiation and Integration REVISED

PHYS 3300 - Spring 2008, Due Feb 21st, by 5pm

1. Numerical accuracy of di↵erentiation and integration methods: Write
a program that calculates the derivative of f(x) using the 2-point, 3-point,
and 5-point formulas. Construct a plot of the 2-, 3-, and 5-point derivatives
to compare the accuracy of the three using the function f(x) = sin(x) with
101 uniformly spaced points from 0 to 2⇡. Using Simpson’s rule, compute the
integral of the result for each case and compare these to

R 2⇡

0 cos(x)dx. What
are the results for 51 points?

2. Application of di↵erentiation methods: Planck’s equation for a blackbody
spectrum relates the spectral radiance, I, of a source (in units of J m

�2
s

�1) to
wavelength, �, and temperature, T :

I (�, T) =
2hc

2

�

5

1

e

hc
�kT � 1

(1)

where h is Planck’s constant and c is the speed of light. This means that
each value of temperature results in a unique Planck spectrum. Using your
5-point method for di↵erentiation, determine the relationship between the peak

wavelength (that is, the wavelength where the Planck function is a maximum)
and the temperature.

3. Monte-Carlo integration: When Simpson’s Rule fails, it is possible to esti-
mate the function, f(x), from a sequence of random numbers and integrate the
results. For instance, the integral is the width of the integration interval times
the function’s average value:

Z
b

a

f(x)dx = (b� a)hfi. (2)

We can estimate the integral by generating a set of random points over the
interval to determine an estimate of the function’s average value,

Z
b

a

f(x)dx ⇡ (b� a)hfi
N

, (3)

where the estimate of the function’s average is

hfi
N

=
1

N

NX

i=1

f(x
i

) (4)

with x

i

being a random sequence of values between a and b, and N the total
number of points used to estimate the average.

1

Problem A: Using this approach, develop an algorithm to compute the integral

I =
Z 1

0
e

x

dx. (5)

Your program should take only N as the input and return N and the integral’s
result. Do this for N = 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000.
Make a plot of the integral’s value on the y axis as a function of N on the x
axis. Also, compare this to the function’s exact integral e� 1.

Problem B: The beauty of any Monte Carlo method is its parallel nature: we
can do additional estimates of the integral on separate machines at the same
time. Using the waradmiral cluster, generate 100 estimates of Eq. (5) with N

= 1000 simultaneously. Do this again for N = 10,000. What is the average
value and standard deviation of the results in each case? How do these averages
compare to the exact value of e � 1? Recall your grid submission tutorial. If
N is the same for all cases, you should be able to submit the same script 100
times (for 100 sets of random numbers). However, you’ll need to use some of
your unix savvy to compile the results. For example, if your script.csh.0xxxxx

files have the last line as the integral’s value, you can use tail to compile the
results:

$ tail -1 script.sh.o* > compiled_results.txt

and compute the averages and standard deviations from that file.

Problem B is for Bonus: Evaluate the 9-dimensional integral

I =
Z 1

0
· · ·

Z 1

0

da

x

da

y

da

z

db

x

db

y

db

z

dc

x

dc

y

dc

z⇣
~a +~

b

⌘
· ~c

(6)

Submit at least 100 jobs to the cluster, evaluating the integral for N = 10,000,
100,000, and 1,000,000. What is the average and standard deviation of the
results in each case?

2

Assignment 4 : Methods for solving ODEs
PHYS 3300 - Spring 2008, Due Feb 28th, by 5pm

In this problem, you will design a program to test various types of di↵erential equation
solvers. We want to test Euler, Leap Frog, and Runge-Kutta algorithms, so it would
be easiest to design a code where one can specify which algorithm to use. Write a
program that calls subroutines for these methods that can be used to solve a set of
ordinary di↵erential equations for an arbitrary number of dynamical variables. Use
it to perform the following:

1. Consider the simple harmonic oscillator:

ẍ + x = 0 (1)

where x(0) = 1, ẋ(0) = 1. Solve this equation numerically for 0 < x < 7 using
each of the methods described above with step sizes 1.6, 0.8, 0.4, 0.2, and 0.1.

2. Make a phase diagram (that is, plot x vs. ẋ) for each solver method for each
step size. Each integrator has a maximum step size beyond which it is unstable.
Roughly locate this step size in each case and label the graphs demonstrating
where each method fails.

3. A damped, driven harmonic oscillator can be written as

✓̈ + q✓̇ + sin(✓) = bcos(!0t) (2)

Use your most accurate solver to reproduce the phase diagrams in Pang, Figures
3.2 and 3.3. Generate these plots by plotting one point out of every 10 (to get
1,000 points for 10,000 time steps).

1

Assignment 5 : Gravitational N-body Problem

PHYS 3300 - Spring 2008, Due March 19th, by 5pm

1. Write a program to solve the gravitational N-body problem for our solar system
(N = 10, 8 planets, one dwarf planet, and the sun) using the N-squared, brute
force method and leapfrog as the ODE solver. Download the initial conditions
from our web site. The initial positions are given in astronomical units (1 AU
= 1.5 ⇥ 1011 m) and the velocities are given in AU/day. Treat the sun as a
massive particle with initial position (0,0,0) and initial velocity (0,0,0) (but
don’t expect it to stay there!). Choose a time step short enough to resolve the
orbit of Mercury and long enough to do at least one complete orbit of pluto.
Generate plots of x vs. y and x vs. z to show the time evolution of your orbits.

2. Invent your own system to simulate. This could be a binary star system (with
planets!), globular clusters in the galaxy, or a known extrasolar planetary system
(see the Extrasolar Planet Encyclopedia at http://exoplanet.eu/). Make sure to
choose a timestep short enough to resolve your fastest particle and long enough
to explore the motion of the slowest. Again, make plots of x vs. y and x vs. z
to show your system at work.

3. Bonus: Modify your code to allow for a large N in the case of test particles
(that is, where you can assume their masses are equal to 0). Create a system
of your choice to test the code and make a movie of the result using IDL.

1

Assignment 6 : Solving Systems of Linear Equations

PHYS 3300 - Spring 2008, Due March 27th, by 5pm

1. Write a program that can solve an arbitrary number of linear equations that
can be expressed in the matrix form

Ax = b (1)

Your algorithm should be as generic as possible. That is, it should allow the
user to provide, as input, the coe�cients of the linear equations and the values
of the resulting vector, b, for an arbitrary number of equations. One way of
doing this allows the user to provide an input file that includes the number of
equations on the first line and the coe�cients of the form

3 (2)

a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

2. Test your program on the following problem. A network of resistors and batter-
ies in an electrical circuit is described by the following linear set of equations:

�9.2i1 + 12.5i2 = 18 (3)

12.5i2 � 2.8i3 + 3.5i4 = 16

1.8i3 � 16.4i5 = �16

i1 + i2 + i4 = 0

i3 + i4 � i5 = 0

Write a program to solve the system of equations and return the five currents
i1, i2, i3, i4, and i5. What results do you get? Note that it is not necessary that
the currents all be positively valued; a negative value simply implies that the
current goes in the opposite direction from what was assumed in developing the
set of equations.

3. Now let’s test the robustness of your algorithm. Based on the method you used,
predict the following:

(a) How will the time it takes for your algorithm to run scale with N , the
number of equations?

(b) Based on your allocation of array resources in your program, what is the
maximum number of equations you can calculate?

1

4. Use your code to test your predictions. Make a graph of the time it takes your
algorithm to complete (y-axis) vs. the number of equations. Do this for at least
10 di↵erent sets of linear equations with di↵erent N .

HINT: To really have fun with this, you want to use large values of N . You can
generate a test matrix that will have a viable solution if all of the coe�cients
aij and bi have unique values. Also, to compute elapsed time, try something like
this: http://exampledepot.com/egs/java.lang/ElapsedTime.html

5. List some ways you might improve your algorithm.

2

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 1 of 9http://space.weber.edu/unixtut/unix11.html

UNIX Tutorial Eleven

An introduction to IDL (Interactive Data Language)

One of the most important aspects of scientific computing is analyzing the results
of your calculations. There are a number of analysis packages available, from
spreadsheet programs like Excel and Numbers, to symbolic computing languages
like MATLAB and Mathematica. One powerful, versatile, and popular package is
the Interactive Data Language or IDL. IDL is commonly used in industry,
academia, and is particularly popular with astronomers and planetary scientists.
Most universities will have licenses for IDL, and a student edition is available for
$89 from ITT. At the most basic, it is software that allows you to plot large
amounts of data quickly. However, you can also program applications complete
with GUI interfaces.

Setting up an IDL environment

IDL on our systems is run as a Unix program through X11. X11 is another terminal
emulation program that can be found in the /Applications/Utilities folder. Before
you can use IDL, you need to set up your user environment by setting a few
environment variables. On our systems, the information you need is located in the
file /etc/bashrc. From your Unix prompt, copy this file to your home directory and
rename is .bashrc (yes, it needs the leading .). For example,

% cp /etc/bashrc ~/.bashrc

Will copy the file to the correct location in your home directory. The leading .
makes the file hidden, so it won't show up unless you use the -la option to ls, like

% ls -la

If you have already started X11, then quit the emulator and restart it. Alternatively,
you can type

% source ~/.bashrc

which will load this file into memory. You can now start IDL. From the command
prompt from within X11, type

% idl

This will launch the IDL package and give you the IDL prompt, something like this:

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 2 of 9http://space.weber.edu/unixtut/unix11.html

Simple calculations in IDL

The IDL command line operates much like the terminal, allowing you to execute
commands and perform operations. For example, you can assign variables:

IDL> x = 1
IDL> print,x

Will print the value 1. With these, you can use IDL like a calculator:

IDL> y = 7
IDL> print,x+y

Will print the value 8. If you want to know the type of variable you are dealing with,
you can use the help command:

IDL> help,x

Should give you output like this:

X INT = 1

Telling you that X is an INT type with 1 element. For general help with IDL, type a
? to get the help browser.

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 3 of 9http://space.weber.edu/unixtut/unix11.html

Plotting with IDL

IDL has standard 2-D and 3-D plotting packages, with PLOT being the most
common. You can plot data as well as function. To plot some data, first generate
arrays with some numbers to plot, specifying arrays with the [] notation:

IDL> x = [1.3, 2.5, 6.7, 8.3]
IDL> y = [0.1, 0.4, 3.4, 10.2]
IDL> plot,x,y

You should get a plot window that looks like

IDL also allows you to plot common functions like SIN and COS. First, generate a
list of X values using the FINDGEN() routine, plot the SIN function, and then overlay
the COS function, like this:

IDL> x = 2*!PI/100 * FINDGEN(100)
IDL> plot,x,sin(x)
IDL> oplot,x,cos(x)

Which should give you two overlaid plots, like this:

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 4 of 9http://space.weber.edu/unixtut/unix11.html

IDL has an interactive plotting tool called IPLOT that works in a similar way, using

IDL> x = 2*!PI/100 * FINDGEN(100)
IDL> iplot,x,sin(x)
IDL> iplot,x,cos(x),/overplot,color=[0,255,0]

Which should give you something that looks like the figure below.

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 5 of 9http://space.weber.edu/unixtut/unix11.html

IPLOT allows you to modify components of the plot (through the Edit->Properties
pulldown menus) and save the results. With a little manipulation, you can get a
more attractive plot, like this:

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 6 of 9http://space.weber.edu/unixtut/unix11.html

Exercise 1

Plot the above functions using IPLOT and modify the plot settings to generate a
labeled figure with larger fonts like you see above

Using procedures in IDL

Much like Unix itself, you can save IDL commands to a file and run the resulting
procedure file. For example, to generate the same plots we made above, we can
write those commands to a procedure file called plotwaves.pro and save it in your
working directory (where you launched IDL). In order to use them as a procedure,
the file needs to look like this:

pro plotwaves
 ; This is a procedure file to plot sin and cos in IPLOT
 x = 2*!PI/100 * FINDGEN(100)
 plott,x,sin(x)
 oplot,x,cos(x)
end pro

Here, the ; symbol indicates a comment line, line // in java or C++. Once you
have this file created, you can compile and execute it from the IDL prompt, like so:

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 7 of 9http://space.weber.edu/unixtut/unix11.html

IDL> .run plotwaves
IDL> plotwaves

As long as the file has the .pro extension, the file name is the same as the
procedure name, and it is located in the working directory, you should see the
same IPLOT window you saw before.

Configuring your IDL procedure library

Most IDL users create a directory to hold all their procedure files so they are easy
to keep track of, and then train IDL to find them and use them. To do this, you
need create an IDL startup file which loads the location of your personal library.

To do this, make a directory in your home directory to hold the library:

% cd ~/

% mkdir idllib

% cd idllib

Now copy the template startup file to this location

% cp /usr/local/lib/idllib/idl_startup.pro ./

Open this file in a text editor, and you should see something like this

print,"Loading Paths..."
!path='/usr/local/lib/idllib:'+!path
!path='/usr/local/lib/idllib/krctool:'+!path

These are paths to libraries located on your computer. Now, to add your library
location, add the following line to the end of the file so it looks like this:

print,"Loading Paths..."
!path='/usr/local/lib/idllib:'+!path
!path='/usr/local/lib/idllib/krctool:'+!path
!path='~/idllib:'+!path

Save this file. To convince IDL to load your library path, we need to make one
more change. Edit the file ~/.bashrc (you will need to use File->Open Hidden in
TextWrangler). Make sure that the line

export IDL_STARTUP=/usr/local/lib/idllib/idl_startup.pro

is changed to

export IDL_STARTUP=~/idllib/idl_startup.pro

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 8 of 9http://space.weber.edu/unixtut/unix11.html

Move your procedure file plotwaves.pro to your idllib directory. Now, exit out of
IDL (using the EXIT command). Then, refresh the .bashrc in memory by typing

% source ~/.bashrc

and start IDL again. You should be able to execute plotwaves straight away,

IDL> plotwaves

since IDL now knows where to look.

In general, when managing procedure files for IDL, you should

Always store your procedure files in your idllib directory
Name your files with the same name as your procedure.

Reading and plotting data with IDL

Reading data in IDL is similar to other programming languages, in the sense that
you need to open a file, read it into an array or other variable, and then close it.
However, this can be done with just a few lines of code. For example, the
procedure readdata, below, will read in a file with 2 columns and 10 rows of data
(specified as a command line argument) and print the results.

pro readata,file
; procedure for reading and printing a data file
 lun=1
 cols=2
 rows=10
 openr,lun,file
 data = fltarr(cols,rows)
 readf,lun,data
 close,lun
 print,data
end pro

Here, lun is the logical unit number which is assigned to the file using the openr
command. We then define a floating point array with the proper number of rows
and cols to data using fltarr. Then, we read the data in with readf and close the
file with close.

You run this by storing it in your library folder, compiling, and executing the
procedure in IDL:

IDL> .run readdata
IDL> readdata,"test.txt"

using a file called test.txt in your working directory. To plot the data, you can

1/16/08 4:35 PMUNIX Tutorial Eleven

Page 9 of 9http://space.weber.edu/unixtut/unix11.html

add an IPLOT command to the procedure above to plot the first and second
columns of the data file:

pro readata,file
; procedure for reading and printing a data file
 lun=1
 cols=2
 rows=10
 openr,lun,file
 data = fltarr(cols,rows)
 readf,lun,data
 close,lun
 print,data
 iplot,data(0,*),data(1,*)
end pro

Exercise 2

Create a data file with 10 rows and 2 columns and read it into IDL and plot it using
the example above.

Exercise 3

There is a pre-developed extension of this procedure for generic plotting called
iplot2d located in the system library, /usr/local/lib/idllib. This procedure
allows you to plot a file that may have a header with any number of columns and
rows. For this exercise:

Dowload this data file exoplanet.txt
Plot the planet period (2 column, y axis) vs. the planet semi-major axis (3rd
column x-axis) using the iplot2d procedure (see below).
Modify the properties to plot points instead of lines, increase the font size, and
label the plot
Save and print the results

The iplot2d procedure can be executed by typing

IDL> iplot2d,"exoplanet.txt",cols=5,hskip=2,xx=2,yy=3

Where xx is the x column to plot, yy is the y column to plot, cols is the number of
columns, and hskip is the number of header lines to skip.

M.Stonebank@surrey.ac.uk October 2001

